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ABSTRACT

'Least squares estimators of regression coefficients can be ,

overly sensitive to violations of certain error assumptions; e.g.,

outliers in the response variable. One solution to the presence

of outliers in a data base is to apply univariate robust estima-

tion procedures to the residuals of estimated models. Equally

problemmatic as outliers among the response variable are outliers

or aberrant values for the predictor variables. Extreme values

on individual predictor variables or an unusual combination of

predictor variable values for a few observational units can dis-

tort least squares estimators even if the error assumptions are

valid. This article discusses robust regression procedures, with

special emphasis on techniques which are resistant to extreme

predictor variable values./
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1. INTRODUCTION

The adequacy of least squares estimatois of regression co-

efficients is critically dependent on model specification and

model assumptions. Although least squares estimators possess

powerful theoretical properties (e.g., Seber 1977, Chapter 3) and

maintain relative insensitivity to some violations of model as-

sumptions (e.g., Box and Watson 1962), certain model anomalies

such as outliers can severely distort least squares estimates

(e.g., Gunst and Mason 1980, Section 2.1.3). Robust regression

procedures are potentially useful for both detecting and effec-

tively adjusting for outliers.

Outliers among the response or predictor variables can occur

for a variety of reasons including transcribing or coding mistakes,

unusual experimental conditions, or truly aberrant data values.

With large data sets it is often difficult to detect one or a

few outliers, particularly if they cluster in the same region

of the (p+l)-dimensional space of response and predictor variables.

Yet their impact on coefficient estimates can be catastrophic if

the outliers lie in strategic corners of the space of response

and predictor variables. For these reasons, adaptation of tra-

ditional (e.g., maximum likelihood) estimation procedures which

could provide protection against outliers are a current focus

of research activity.
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In this article only Huber's version of N-estimation will be

investigated. Other. variants of robust regression procedures

have been proposed. For example, Andrews (1974) explores M-

estimation utilizing a trigonometric weighting function on the

residuals. Rupert and Carroll (1980) and Koenker and Bassett

(1978) use regression quantiles and trimmed residuals to obtain

robust regressionestimators. Iman and Conover (1979) adopt

rank transforms on the response and the predictor variables in

order to reduce the impact of outliers on the prediction of the

response variable. Finally, Askin and Montgomery (1980) discuss

the combination of robust and biased regression estimators to

simultaneously combat the ill effects of outliers and of multi-

collinearities among the predictor variables.

The sections which follow develop the need for robust re-

gression procedures and suggest methods which can compensate for

outliers in the response or the predictor variables. Section 2

of this article outlines robust M-estimation for regression models.

Section 3 discusses influence functions and their role in the

assessment of robustness properties of estimators. In this section

both least squares and M-estimators are shown to be affected by

predictor variable outliers. Several proposals for detecting

outliers among the predictor variable values and for adjusting

regression estimators in order to compensate for these outliers

are described in Section 4. Section 5 briefly discusses outlier-
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induced multicollinearities. A detailed example is given in Sec-

tion 6 and concluding remarks are made in Section 7.

2. PRELIMINARIES

Write a multiple linear regression model as

Y = 601 + XB + _ , (2.1)

where Y is an n-dimensional vector of observable variables, 1

is a vector of ones, X is a centered (X'I = 0) full-column-rank

matrix of observations on p nonstochastic predictor variables,

a0 and 0 are the unknown constant and p-dimensional vector of

regression coefficients, respectively, and e is an unobservable

random error vector. Least squares estimators of the parameters

in model (2.1) are obtained by minimizing

I p(ri ) , (2.2)
i-I

wh p(r) rand r. = Y -60 - is the ith fitted resi-

dual based on the estimators 0 and 6 (u is the ith row of X).
0 - 1

Since p(°) is differentiable one can easily show that minimiza-

tion of (2.2) is equivalent to solving the following system of

A> (p+l) homogeneous equations (the "normal equations"):

n n
*(ri) = 0 , . x.j(ri) = 0 j=l,2,...,p (2.3)iii.l i=1 i

where (t) - dp(t)/dt c t. The resulting least squares estimators

are



4

B0  Y and " -x'X)-lx'Y- (2.4)

If C %NID(,' 2), the least squares estimators are maximum like-

lihood estimators since p(C) a -2a2 ln[fa () + c, where fa (e) is

the density function for a N(O,O 2) variate and c is a constant

which does not depend on B0 and B

Robust M-estimators seek to reduce the influence of aberrant

response values while retaining an equivalence with maximum like-

lihood estimators when no such wild response values occur. This

is accomplished by selecting a function p(.) which will leave

"typical" residuals unchanged but will lessen the influence

of large residuals on the solution of eqns. (2.3). Most M-

estimation procedures require that p(') be convex, nonmonotone,

and that it possess a bounded, continuous derivative *(.). The

convexity and monotonicity properties are imposed to insure

unique solutions while the boundedness and continuity of *(.)

insure that the estimator cannot be dominated by an extremely

large residual (boundedness) and that small changes in residuals

cannot produce large changes in the resulting estimates (con-

tinuity). Existence of higher-order derivatives of p (.) are

desirable for theoretical derivations of asymptotic properties

of M-estimators.

Huber (1964) popularized the use of a robust M-estimator

which can be defined in terms of the following function p ():



1 2• ri Ir I < c (2.5)
p (ri

Ph~ri) =1 2
cr)il c rij > c

Equivalently, the estimator can be defined as the solution of

eqns. (2.3) when the following *(-)-function is used

r i  Iri < c (2.6)
*(r i =

{csign(ri) Iri > c

The value of c in eqn. (2.6) is often chosen to be a multiple of

a robust estimator of a. Note that 4)(°) is bounded by ±c and

that if all the residuals are less than c in magnitude the solu-

tion of eqn. (2.3) using this *(-)-function will be identical

with the least squares (maximum likelihood) estimator.

Computationally, several decisions must be reached before

M-estimates can be obtained. First, initial estimates of $0

and 0 must be determined so residuals can be calculated and

inserted into eqns. (2.3). Second a choice for c and perhaps

a robust estimator of a must be selected for use with 4,(.).

Finally, a computational scheme for iterating to obtain new

estimates must be devised. These considerations are discussed

in Dutter (1975, 1977) and Huber (1981, Section 7.8) and will

not be explored in detail here; however, we will briefly outline

one adaption of their computational scheme.

In order to insure convergence, that a minimum is reached,

2and to allow for the simultaneous estimation of 80 , _ and a
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Dutter (1975, 1977) and Huber (1981) elect not to minimize eqn.

(2.2) but instead choose to minimize

-n [p(ri/a) + ala (2.7)

i-i

or, equivalently, to solve the following system of (p+2 ) equa-

tions
n - n
S*(r./a) -0 i . (r.Ia)-0 j=l,2,...,p (2.8)

ii i-i 3. 3

and
n-l n ~29

xl(r/a) a, (2.9)
i-i13

where X(t) - t*(t) - p(t). Equations (2.3) and (2.8) are iden-

tical if ri is replaced in the former set by ri/a. Since the

residuals are standardized in eqns. (2.8) by an estimate of

scale, the value of c in eqn. (2.6) need not depend on a and is

often chosen to be 1.5. The value of a is selected so eqn. (2.9)

will yield a consistent estimator of a when F 1- N(O,a 2); viz.;

a - (n-p-l)E[X[e/a)]/n.

Iterating with eqns. (2.8) and (2.9) is relatively straight-

forward. Let 8(k) denote the estimates of e' - ( 0,B) obtained
J) -2

on the kth iterate and let a (k) denote the corresponding estimate
of a . From eqn. (2.9), a new estimate of a is

n 22

- (a2 x(ri/a )a ,(2.10)
42(k+l) ( i (k) (k)

i- l

where for ease of notation we let r i denote the ith residual
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obtained from the kth iteration. By letting 0(t) i (t)/t, eqns.

(2.8) can be rewritten as

n n ~ -

O *(ri/a)"(ri/) = 0 , IXij 0(ri/a) •(ri/)- 0 (2.11)
i=l 1

or as

6 = (Z'Z) ZI Y , (2.12)

where Z = [l,X] and D = diag((rl/o).... (r /a)). Equation

(2.12) is simply a weighted least squares estimator of e in which

the stochastic weights are 0(ri/;). Using the residuals from
-2

the kth iteration and a (k+l) from eqn. (2.10), 6 (k+1) is found

from this weighted least squares estimator.

Based on the foregoing, iterative estimation of the para-

meters of model (2.1) can be based on the following sequence of

steps:

1. Obtain initial estimates of 80 and _ from eqns. (2.4)

or from one of the estimators proposed in Section 4,

2. Use either the least squares estimate of a or some

robust estimate of scale; e.g., a = {medianlrI1/.6745,
*

where r. = r.-medianiri}, (Andrews, et al. 1972),
1 2

3. Calculate a (k+1) from eqn. (2.10) using c = 1.5,

4. Update the estimates of 0 and _ with the weighted
0

least squares estimator (2.12),

5. Repeat steps 3 and 4 until satisfactory convergence

is reached.
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This algorithm for finding robust regression estimates pro-

vides good protection against aberrant response (error) terms.

Reasons for this protection, apart from the informal discussions

given above, can be readily appreciated by examining the influence

functions corresponding to least squares and H-estimators. At

the same time, the lack of "resistance"6 of both of these esti-

mators to outliers in the predictor variables can be seen from

the influence functions. We now turn to this more formal

evaluation of the sensitivity of regression estimators to vio-

lations of model assumptions.

3. INFLUENCE FUNCTIONS

Rampel (1968, 1974) introduced the use of influence

functions for studying robustness properties of estimators.

The local behavior of an estimator in a neighborhood of the

assumed underlying distribution is studied by first expressing

the estimator as a functional on a space of probability dis-

tributions. Then the influence function of the estimator is

defined to be the derivative of the functional evaluated at the

assumed distribution. Not only can idealized or "parametric"

influence functions be defined in this manner but empirical

influence functions can also be defined in terms of empirical

distribution functions. Before turning to regression models,

these concepts will be illustrated on a simple location model.
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Let T(F) denote a real-valued functional defined on a

subset of probability distributions, FEF. For example, the

mean functional can be defined as

f(x-T(F))dF(x) = 0 , (3.1)

yielding T(F) = ji = fx dF(x). If Fn is an empirical c.d.f.

based on a random sample of size n from F, an estimator of T(F)

can be derived from eqn. (3.1) as

f(x-T(F ))dF (x) = 0 (3.2)
n n

or T(F) = = n-1jx  The functional T(F) can be viewed

either as a parametric analogue to the finite-sample estimator

(3.2) or as a limiting estimator for very large sample sizes.

Consider next the effect of an outlier, x0 , on T(F) and

T(F ). In the space of probability distributions an outliern

can be modeled as a mixture distribution

F (x) = (l-a)F(x) + aH0 (x), 0 < a < 1 (3.3)

where
x

H0 (x) = f_ 60 (t)dt

and 60(t) is a probability density function for the contaminant.

For the remainder of this section we will assume that 6 (t)

0

assigns point mass to x0 . Using this contaminated (point

mass) distribution function the influence of X0 on the estimator

can be assessed.

A measure of the impact of an outlier x0 on the estimator

. . . . . .0
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T(F) is the "influence function" which is defined to be

T(F) - lirT(F")-T(F) (3.4)

where T(F) can be viewed as a directional derivative of T(F) in

the direction of x0 if the limit exists and is unique as the

limit is taken from positive and negative directions. An em-

pirical influence function can be defined in a similar fashion

simply by replacing F with F in eqn. (3.4).n

Contamination of the assumed distribution by the outlier

x0 distorts the estimator. For large samples T(Fl) - v+I(x0 -U)

and T(F) = x0-. Thus the influence (distortion) of the esti-

mator is proportional to x0-. For finite samples,

T(F n) xn + a(x -x n ) and T(P ) x-x n' where xn - n-lxi

Note that in either case the influence functions are unbounded

functions of the contaminant x0 ; consequently, a single gross

outlier can have a devasting effect on the estimator even if the

outlier occurs with relatively small likelihood (a).

These results contrast with robust M-estimation in that

the latter estimators possess bounded influence functions and

S thereby limit the distortion an outlier can cause. Robust M-

estimator functionals in the location model satisfy the equation

f*(x-T(F))dF(x) = 0 , (3.5)

which reduces to eqn. (3.1) when *(t) = t. Replacing F(x)

by F (x), differentiating eqn. (3.5) implicitly, and evaluating

the derivative at a = 0 yields
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*(Xo-T (F))

(F) (3.6)f (X-T (F) ) dF Wx

where J(t) = dp(t)/dt. The influence function (3.6) is propor-

tional to l(.) and is thereby a bounded function of x0. Analogous

properties hold for the empirical influence function.

Turning now to the regression model (2.1), the regression

functional can be written as

fZ' (Y-XT (F))dFY) = 0 , (3.7)

where Z = [1,X] and F(Y) represents the c.d.f. of a multivariate

normal density function, Y N(Z,o 2I) with _'=(80,8'). This

functional can be rewritten as

T(F) = e = (Z'Z) zf YdF(Y). (3.8)

It is important to realize that the response vector Y represents

a single observation from this multivariate normal distribution

and not n independent observations from a univariate distribution.

Thus an appropriate contaminated distribution for this functional

is
F(Y) = (l-c)F(Y) + CLH (Y) (3.9)

_0-

where H 0(Y) is a c.d.f. for the contaminated distribution of an

n-dimensional outlier Y - Z8 + e. The error E does not follow

2
the assumed N(O,a I) distribution and could be partially or com-

pletely deterministic. Single response outliers can be modeled

by defining (n-l) of the elements of E to have the assumed

NID(O,o2) error distribution and the remaining one to have a
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different distribution (perhaps deterministic). The influence

function corresponding to eqns. (3.7) and (3.9) is

(F) - z) lz (-q

- (Z'z) 1lZ'.Eo (3.10)

This influence function reveals that the distortion in the

functional (3.8) is proportional to the error vector, so.

and is an unbounded function of the elements of the contaminant

YO. Thus, as in the location model, regression estimators can be

severely distorted by gross outliers.

Corresponding to the functional (3.8), a regression func-

tional for a robust M-estimator is

fZ'Y(Y-ZT(F))dF(Y) - O, (3.11)

where P(t) - (4(t 1 ),...,(tW))' for some robust V(.)-function.

Using eqn. (3.9) as the contaminated distribution produces the

following expression for the influence function T(F):

zfi(Y-ze_)aF(Y)zzi(F) - z"Y(-ze , (3.12)

where t (t) = diag(((t1),...,P(tn)). As with eqn. (3.6) for the

location model, the influence function in eqn. (3.12) is propor-

tional to T_( -ZS) and is therefore a bounded function of the elements

of Y. A similar derivation for the empirical influence function F Y)

yields

Z"#(Y-ZO)ZT(F Mj) ZY(-;

or
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i(F (y)) - (zY-ze )Z, (3.13)

where 6 is the robust M-estimator (2.11).

Hampel (1974) and Huber (1981) justify the need for bounded

influence functions. Intuitively, the above derivations show

that estimators can be severely distorted by gross contaminants

even if their likelihood of occurrence is small. Robust M-

estimators bound the influence functions and thereby limit the

change which an errant point can produce in an estimator. Of

special importance is the safeguard that robust M-estimators

provide against catastrophic distortions by outliers in the

response variable for either location or regression models.

Although robust M-estimators provide protection from

contaminated distributions for the response variable, it should

be apparent from eqns. (3.12) and (3.13) that no specific pro-

tection is offered for aberrant predictor variable values. That

outliers in the predictor variables is as insidious a problem

as outliers in the response variable can be illustrated with a

simple example. Supppose eqn. (2.1) represents a single-variable,

no-intercept model: Y. 8X. + c.. Rewrite eqn. (2.3) as2. 1 2.

n

2 (Y -X1  + XI X *(Y _X 0.
i i

If the response variables are held fixed and X 1 4, the second

term of this equation is driven to zero. Consequently, eqn. (2.3)

reduces to
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Oy (Y1 -X 1 ) - 0

which has a solution 8 X1 Y 1 0. Thus regardless of the

value of 0, the estimator of 8 approaches 0 for both least

squares, *(t) = t, and for any robust M-estimator possessing

the properties described in Section 2; in particular, nonmonotonic

continuous *(-)-functions for which *(0) - 0, including eqn. (2.6).

This example illustrates that a single errant predictor

variable value can have as catastrophic an effect on estimation

of parameters for regression models as can outliers in the res-

ponse variable. The next section examines several proposals

for dealing with aberrant predictor variable values.

4. PROPOSED SOLUTIONS

A natural solution to the problem of outliers in the

predictor variables is to weight each predictor variable in

a fashion similar to M-estimation on the response variable.

Accordingly, one could replace Xij b * .(X.ij.), where

J(x ij) X ii X i j 1 .1< cj

c Jsign(X i) IX ij i > C j (4.1)

c - 1.5S, and s is a robust measure of scale for the n observa-
j

tions on X_. One could also center X. with robust estimate of
J ,

location prior to forming the -).

Another proposal (Mallows 1973, Denby and Larson 1977) is
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to replace Xij by M (X ij), where

p
*M (Xij) - X.. 1 q (X ik) (4.2)

k ik

and

I QX Q)/(2Xi-XIX 2 )  r! < Q1

qk (Xik) i 1 Q, <- rk f - Q2

(X -XQ )/(2XikXQ -X Q ) r! > Q
Q2  Q1  ik Q1  Q2  ik 2

In this weighting scheme Q1 = 1 + [.06n], Q2 - n+l-Ql' It]

greatest integer < t, and rk is the rank of Xik and X j is the jthik k Qj
sample percentile values of X.

Each of the *()-functions (4.1) and (4.2) should be effec-

tive protection against a few outliers in individual predictor

variables. Neither of these weighting schemes might be effective

if the outliers are due to rows of X lying in an extreme corner

of the observed predictor variable space but not having an ex-

treme value on any individual predictor variable. Denby and

Larson (1977) observed that the estimators in their simulation

did not perform satisfactorily when a single outlier among the

predictor variables was induced by adding a large quantity to

each of two predictor variables. Both M-estimation and Mallows

adaptation (4.2), among others, were unable to successfully

account for the effect of the two-dimensional outlier. We now

propose two additional alternatives for multidimensional outliers.
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Detection of extreme predictor variable values, or combinations

of predictor vairables, is the first step in rectifying the estima-

tion problems they produce. Abnormally large or small values for

individual predictor variables are relatively easy to detect from

(perhaps robust) sumary statistics. For example, some computer

programs automatically "flag" observations which are further than

two or three standard deviations from the mean. Examination of

the weights *J(ij) or qk(Xik) are also useful for detecting out-

liers in one dimension. For outliers in two or more dimensions

other techniques are needed.

Hoaglin and Welsch (1978) popularized the use of a matrix

referred to as the "hat matrix" to detect outliers among the

predictor variables. The hat matrix is so named because it

transforms the response vector into the least squares prediction

vector Y - HY where

H - Z(Z'Z) 'Iz

-I 1

M n li + X(X'X)- 1 X' (4.3)

Diagonal elements of the hat matrix are
h+i n +u(XX (4.4)

where the quadratic form in I represents a (squared) Mahalanobis

distance of the ith row of X from the centroid of the predictor

variable space. Large values of h indicate rows of X which lie
ii

in extreme regions of the observed predictor variable space. Ano-
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malous values on one or more predictor variables can be detected

by the hii. Since the predictor equation for the ith response

variable can be written as

Y h Y + I h.. Y. , (4.5)
i i i i 1) 3

the h.. are a direct measure of the relative importance of Y.ii 1

in predicting its own value. Due to the importance of the diagonal

elements of H in detecting multidimensional outliers and assessing

the influence of Y. on Y., they have been termed "leverage values."
2.

The hat matrix H is idempotent; consequently, the leverage

values are constrained to the interval [0,1]. The more extreme a

row of X is relative to the other rows of X, the closer the cor-

responding leverage value is to 1. For example, if model (2.1)

contains a single predictor variable

h ii n- + (X i_X)2/ I

k=l

Observe that if X X, hii but if X is very large in

magnitude

(1 - -)2

h.. =n 
1 + (-xix

J2 (lX% ) 2 _1 (x1 -1-2
1 jXi ) 1

-1 (1 - n-1 2
Sn 1 + -2( n.

-122 11(1- ) + (n -)(-n

In the previous section it was shown that as X 1  the least

squares estimator 8 approaches zero. From eqn. (4.5) or by
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directly evaluating Y1  S B one can show that Y- as 

In general, if u' is a single outlier in X the corresponding
:-l

predicted response will be almost uniquely determined by, and

equal to, its observed response. Concomitant with near perfect

prediction of Yi when hii 2i 1 will often occur severe distortion

of one or more of the coefficient estimates.

Multivariate outliers are detectable not only by large

leverage values but also in the normalized principal components

of X. Let XS denote the standardized (XSXS is in correlation form)

matrix of predictor variables. Further, let t 1 t2 < " <

denote the latent roots of Xs'X and VI, V2 ... ,V the corresponding
S 1 -2 -P

latent vectors. The jth normalized principle component of X is

m t-11 XV. An extreme row of X causes an elongation of one

of the component axes and a large element in the corresponding

normalized principle component. Since the component vectors are

mutually orthonormal, univariateweights such as eqn. (4.1) or (4.2)

could prove effective in obtaining estimators of the principal

component coefficients yj. ZV ' B which are resistant to out-

liers in the predictor variables. Inverse transformations could

then produce resistant estimators of the Bj.

Another alternative to the above proposals is a direct

weighting of the rows of X. Consider weighting the kth row of X

by a factor w, where 0 < k 1. Then model (2.1) is replaced

by
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Y - 81 + x 8 + , (4.6)

where 8; - 80 + n-1 Q= diag(l,...lw,li...l), and

X11 M (I - n- 111) (i.e., X contains centered values of the

matrix A). Underlying the use of model (4.6) is the assumption

that when inordinately large predictor variable values occur this

model is more reasonable an expression of the relationship between

response and predictor variables than is model (2.1). The impact

of this model on the estimation of parameters is that eqns. (2.8)

become
n n
I ,(r./a) 0, 0 ,(Xij)ri/a) -- 0 j=l,2 ... p) (4.7)i-i i~l

where

(Xi Xi - - = n- , .
i ij i=l 13

and w. = 1, i # k. Iterative solutions of eqns. (4.7) and (2.9) can1

be obtained as in Section 2. Note that 0 can be obtained from and
0 -

8 by the following relationship

0 0 -1jV * -l

j.l

.. 
.

and that asymptotically 80 and 80 are identical.

Leverage values for the weighted model (4.6) can be calcu-

lated from

H - n-l 11 + xQ(xLxS)-lxL
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As a function of wk and the original leverage values, the kth

leverage value of HQ is

hk(wk) - n-1 + (h - n-l)t 2/l-tl(hk-n-1) (4.8)

where t W (i-w) + n-l (1-W 2 t2 a n-l(l+ (n- 1)wk)
' 1t* k an 2  (1

For large sample sizes tI  1- W and t yielding an approxi-
1 k t 2  'k~ ilig napoi

mation to eqn. (4.8):

k(k) 1- (49)
i- (l-Wk)hkk

Note that for large sample sizes and < 1, hkk(k) < hk;

moreover, algebraic manipulation of eqn. (4.8) allows one to

verify that the same property holds for all sample sizes.

Equation (4.9) provides a rationale for selecting a value of

wk. Suppose one wishes to fix the leverage value of the kth row

-i
of X to be a suitably small or moderate value n, n < < hkk.

By setting hkk(wk) - f in eqn. (4.9) one can solve for a value

of wk:

Wk "U-h k (4.10)
h k(l - r)

Pj Note that setting n - n yields wk z 0 for moderate to large

-i
sample sizes ; i.e., setting n - n in eqn. (4.10) results in

replacement of by 0' (approximately). Similarly, setting

n- hkk yields wk -1; i.e., u is left unchanged in X.

To illustrate the effect of this type of weighting scheme,

i m ~ i
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let us return to the single-variable, no intercept model and

assume that X is an outlier. For this model,
1

2 n__2_h_11

1 (1- W1)h

and S(l- h11)

1hl (il- )W, M h11 (

for some specified value n of h (W1). Then
111

and (X X for i 1 1. Thus if f(t) = t in eqn. (4.7) the

least squares estimator for the weighted model (4.6) is

n n 2=I *S1(X i)y i/i l ( X i 2

n 2n
In1 Xi/(l-n)] Y 1 + IX.Y.

iiY' (1-n)l-l 1

which yields a finite and (generally) nonzero estimate of 8,

unlike the solutions given in the last section. Iterative

solution of eqn. (4.7) for ,(t) given by eqn. (2.4) will like-

wise not degenerate to a zero solution as X1  .

Generalizations of this procedure to two or more outliers

in X are possible and can follow a development similar to the
x~ 2

(10m

i'4

whc ilsafnt n gneal)!ozr siaeo

unietesltosgvnimh atscin trtv



22

above. The theoretical results are far more complex and iterative

schemes need to be developed in order to solve for weights which

will enable two or more leverage values to be simultaneously

satisfied. Although cruder and only an approximation, a simpler

approach to situations in which two or more outliers are present

would be to use eqn. (4.10) as a guide to an initial specification

of weights and then alter the weights jointly until a satisfactory

combination of leverage values is attained.

5. OUTLIER-INDUCED MULTICOLLINEARITIES

Observations which possess very large values on two or more

predictor variables can induce multicollinearities among the

predictor variables. Unlike the usual situation in which all

observations conform to the multicollinearity, an outlier-induced

multicollinearity is an artifice of the outliers and not a true

indication of a redundancy among the predictor variables. Dele-

tion of the outliers from the data base destroys this type of

multicollinearity.

The effects of an outlier-induced multicollinearity on a

regression analysis are similar to those resulting from a true

multicollinearity. Coefficient estimates tend to be too large

in magnitude, their signs tend to be determined by the multi-

collinearity itself and not the true relationship between response

and predidtor variables, and the variances of coefficient estima-
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tors for multicollinear predictor variables can be orders of mag-

nitude larger than if the predictor variables were not multi-

collinear. For example, if eqn. (2.1) represents a two-variable,

no-intercept model the estimating equations (2.3) become

n
X .jP(Y.-8 X -8 X i 0 j=l,2. (5.1)

If one now lets X lj , j= 1,2, and restricts XI1 and X12 so

X l/XI2 = 1, eqns. (5.1) reduce to

i(Y -( +8 2)Xl) = 0 , (5.2)

which has as solutions 812 1 /X 0 O. The limiting solution

of eqn. (5.2) forces 81= -82 but 81 and 82 can have almost any

magnitude, regardless of the true values of 81 and 82. This

type of ambiguous solution is characteristic of least squares

estimation when predictor variables are multicollinear. Since

eqns. (5.1) and (5.2) are also estimating equations for M-

estimators, robust M-estimation can also suffer ill-effects of

outlier-induced multicollinearities.

Biased estimation is frequently offered as a solution to

estimation with multicollinear predictor variables. An attractive

alternative to biased estimation when multicollinearities are

caused by a few outliers is robust estimation; however, it should

be apparent from the above example that the robust procedures

must be resistant to predictor variable outliers.
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As with the single-variable example in the previous section,

weighting a single outlier provides protection against the domina-

tion of the estimator by the outlier. For this two-variable

example the weighted M-estimator is obtained from the equations

n

0Q(X )iM(Y -8 4Q(X i)-0 ) 0 9"1,2i-i~ u l3  I 82 V,(Xi 2 )) -,

where ( ) Xij for i Q and i (Xj) 1 Xlj. If XI w

X 1/X 12

S(Xlj = =,

I j j

2E* 2 -(* (E*X X 21/

1-nil i2 il i22}/
2 2/

_nil i2 iili2

where E* indicates that the summation is for all i 1 1. Note in

particular that as Xlj 4 G with X11/X12 = 1, Q(Xlj) is bounded.

Thus M-estimation with this resistant weighting cannot be domi-

nated by the outlier-induced multicollinearity.

Another facet of outlier-induced multicollinearities is that

multicollinearities can actually be strengthened when any of the

resistant procedures suggested in the previous section are used.

In fact, occasionally one induces a multicollinearity where none

previously existed by weighting the predictor variable values.

Extreme care must be exercised when these procedures are used;

*in particular, one should always examine the latent roots and

latent vectors of the correlation matrix of predictor variables,
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variance inflation factors, etc. to determine whether multicolli-

nearities have been induced or strengthened by the weighting of

predictor variable values. The example discussed in the next

section illustrates this point.

6. GASOLINE MILEAGE DATA

Hocking (1976), as part of an important and extensive survey

of variabel selection techniques, utilized a set of data on

gasoline consumption to illustrate the procedures he discussed.

The original data set consists of a response variable, gasoline

mileage (MPG) and ten predictor variables for each of 32 auto-

mobiles, the data taken from several issues of "Motor Trend"

magazine. The ten predictor variables are engine shape (SHAPE),

number of engine cylinders (CYL), automatic or manual transmission

(AM), number of transmission speeds (GEAR), engine size (SIZE),

engine horsepower (HP), number of carburetor barrels (CARB),

final drive ratio (DRAT), weight (WT), and quarter mile time

(TIME). Henderson and Velleman (1981) critize the use of MPG
-l

as the response variable, preferring to use GPM= (MPG) , and

suggest that the preponderance of sports cars in the data base

would make RATIO= HP/WT a potentially valuable addition to the

set of predictor variables. After eliminating several predictor

variables which do not appear to aid in the prediction of the

response variable, we decided to illustrate the procedures
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discussed in the previous sections by regressing GPM on CYL, HP,

DRAT, WT, AM, GEAR, and RATIO.

After examing various plots of the data to insure that no

further transformations were apparent, several statistics were

calculated for each observation as an aid to the detection

of possible outliers. Table 1 displays these statistics alcn

with a list of the automobiles included in the data set. The

leverage values, eqn. (4.4), for the complete data set are

shown in the second column of the table. The Lotus Europa,

h =0.872, and the Maserati Bora, h.. =0.681, have the largestii 1i.

leverage values in the data set, both greatly exceeding Hoaglin

and Welch's (1978) rough cutoff of 2(p+l)/n=0.5.

[Insert Table ii

Also displayed in Table 1 are studentized deleted residuals,

t(_i) (e.g., Gunst and Mason 1980, Section 7.1.3). These statis-

tics measure the difference between an observed response Y. and

its predicted value Y(-i) which is obtained using least squares

coefficient estimates derived from the other (n-l) observations.

Let SSE denote the residual sum of squares from the fit to GPM

using all 32 observations. Then the ith studentized deleted

residual is calculable as
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Y 1 Y(-i)

{ VarfY(i

(i - h. )- r.C(-i)

2 -1 2
where (n-p-2) = SSE - (1-h r. Individually the t(i.)

follow a student t distribution with (n-p-2) degrees of freedom.

Although the t(_i) are correlated, t tables can be used to

furnish useful cutoff values for the detection of outliers.

The Chrysler Imperial has the largest studentized deleted

residual in Table 1. Its value, t(_i) = -4.000, places this

statistic in the extreme lower tail of the corresponding t

distribution and warrants a close examination of the Chrysler

as a possible outlier. The Cadillac Fleetwood and Pontiac

Firebird have moderately large studentized deleted residuals

but are not so unusually large to be of concern in a sample

of 32 observations.

Another statistic which will be examined as an aid in the

deletion of outliers is Cook's (1977) distance measure. Let

A8(_i) denote the least squares estimator of 0 which is calculated

from the (n-l) observations excluding the ith one. Cook (1977)

defines a statistic

(e- ) z'z (e- e
D. -i)

(p+l)MSE

H
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which allows a direct comparison of the least squares estimator

from the complete data set, 8, with the estimator calculated

from (n-1) data points, Although this statistic does not

follow an F distribution, Cook suggested that F tables could still

provide useful cutoff values for the detection of outliers.

Because elimination of one observation from a homogeneous data

set should leave e8_i relatively unchanged from e, Cook further

suggested that a value of D.i which is larger than a lower 10%.

F value should be carefully studied as a possible outlier. We

feel this criterion is often too conservative and choose to use

a lower 25% cutoff value, F25 (8,24) -0.623. With this cutoff

value the Lotus Europa is judged to have a strong influence on

the es timation of 8. if the lower 10% F value, F1 0 (8,24)- 0.416,

is used the Chrysler Imperial would also be extremely influential

on the estimation of 8.

The Cadillac, the Lincoln, and the Chrysler are the only

American-made luxury cars w'hich are included in this data set.

They have very similar values on the predictor variables; e.g.,

they all have eight cylinder engines, they are the heaviest

* automobiles in the data set, etc. In fact, collectively they

- . could be considered outliers because of their size relative to

the other automobiles in Table 1. Yet individually their unusual

features tend to be masked because they are similar among them-

selves; therefore, they do not induce individually large leverage
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values in Table 1. The Chrysler Imperial possesses a large stu-

dentized deleted residual and moderate-sized Di because its

gasoline mileage (hence, GPM) differs from the Cadillac and the

Lincoln. The Chrysler's gasoline mileage is 14.7 while that of

the Cadillac and Lincoln is 10.4 (see Henderson and Velleman 1981,

Table 1). Since the Chrysler is an outlier due to an unusual

response value, M-estimation should compensate for its influence

on the fit.

The Lotus Europa poses different problems. Its leverage

value suggests that the predictor variables for the Lotus are

unusual and M-estimation alone might be unable to satisfactorily

adjust for the ill effects of the Lotus. The Lotus is an outlier

in predictor variable space because of the inclusion of RATIO

as a predictor variable. The Lotus has relatively small values

on HP and WT but, unlike other automobiles in Table 1 which also

have small values on HP and WT, it possesses an unusually large

value of RATIO. Other automobiles in Table 1 also possess large

values on RATIO but they have large values on HP and WT as well.

The Lotus is a three-dimensional outlier which the leverage values

have aided in detecting.

Although the Maserati Bora also has a large leverage value,

primarily due to its unusually large horsepower, it does not

have correspondingly large values of t(_i) or D This suggests

that the Maserati is not unduly influencing the fit.
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The last three columns of Table 1 display the leverage values,

studentized deleted residuals, and Cook's distance values for a

reduced data set in which the Chrysler and the Lotus are eliminated.

Although the leverage value for the Maserati is now considerably

larger than for the complete data set, the t(_i) and Di values

still do not indicate that the Maserati is unduly distorting the
fit. Scanning the other t(_i) and Di values in the last two

columns does not lead one to conclude that any other observations

in this data set are strongly influencing the fit.

In order to gauge the impact of the Chrysler and the Lotus

on the coefficient estimates, least squares estimates for the

complete data set are compared with those for the reduced (n-30)

data set in the upper portion of Table 2. There are important

differences in the significance (HP, AM, RATIO) and magnitudes

(HP, DRAT, WT, AM, GEAR, RATIO) of the two sets of estimates.

M-estimates, computed as described in Section 2 using initial

least squares estimates of e and a, are displayed in the lower

portion of Table 2. The M-estimates for the complete data set

and the reduced base set of observations are quite similar to

the corresponding least squares estimates. This is reassuring

for the base set but suggests that M-estimation for the complete

data set has not successfully compensated for the inclusion of

the two outliers. One would expect to see the M-estimates for the

complete data set closer to the M-estimates for the base set

7 --A
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than to the least squares estimates for the complete data set if

M-estimation is adequately adjusting for these outliers.

[Insert Table 2]

The remaining columns of Table 2 exhibit least squares estimates

and M-estimates for each of the predictor variable transformations

which were discussed in Section 4. Overafl, these "resistant"

estimation schemes seem to perform worse than just using M-

estimation on the (raw) complete data set predictor variables,

with the possible exception of the weighted predictor variables

in the last column. These estimates (obtained by setting

n= h = .25 for the Lotus) are quite similar in magnitude to the

M-estimates for the complete data set but several of the coefficients

are not significant when it appears they should be. Regardless of

these comparisons, none of the resistant predictor variable transfor-

mations shows substantial improvement over M-estimation using the

raw predictor variable.

The poor performance of the resistant estimators is

attributable in part to a strong multicollinearity among the

predictor variables. Inclusion of RATIO with HP and WT, while

seemingly an important addition to the set of predictor variables,

* has induced a three-variable multicollinearity of the form

.53 RATIO - .70HP + .45 WT z 0.

This multicollinearity is detectable from the latent roots and

latent vectors of XX S and is further evidenced by the variance

iS
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inflation factors of HP, WT, and RATIO: 51.6, 23.3, and 30.1,

respectively. Note that the signs on the variables in the

above multicollinearity are identical with the signs of the

least squares estimates for the complete data set in Table 2.

Elimination of the Chrysler and the Lotus worsens the problem

since it strengthens the multicollinearity. The smallest

latent root of XX S drops form 0.0098 to 0.0024 for the base

set and the three variance inflation factors increase to

217.0, 60.5 and 143.7, respectively. Note too that the magni-

tudes of the coefficient estimates for HP, WT, and RATIO all

increase when the two outliers are removed from the complete

data set and the signs of the coefficient estimates again cor-

respond to those of the above multicollinearity. These sign

patterns and large magnitudes are well-known characteristics

of the ill effects of multicollinearities.

Each of the resistant estimators, despite their clear

computational differences, either maintains or strengthens the

multicollinearity among HP, WT, and RATIO. Due to the tendency

for both outliers and multicollinearities to distort coefficient

estimates, it would be fortuitous if any of the estimates in

Table 2 were to accurately reflect the true relationship between

GPM and these predictor variables. Since the multicollinearity

is not outlier-induced, one cannot expect the resistant estimators

to overcome the ill effects of the multicollinearity, indeed,
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several of the estimators in Table 2 exhibit the same sign

pattern as the least squares estimates, although the magnitudes

for the multicollinear predictor variables tend to be smaller

than those given by the estimates for the base set.

Two changes were made in the data set in order to further

examine these estimators. First, since the multicollinearity

is due to a defined relationship between three predictor variables,

viz, RATIOUHP/WT, one of these variables can be eliminated from

the data set without seriously impairing prediction of GPM.

RATIO was added to the data set because of the nature of the

automobiles which are included in Table 1 and the belief that

it might represent an important characteristic of the foreign

sports cars. WT shows up as an important predictor variable in

every analysis performed on these data. Consequently, we decided

to eliminate HP and break up the induced multicollinearity. An

alternative to this approach would be to retain all three pre-

dictor vairables and combine robust and biased estimation pro-

cedures (e.g., Askew and Montgomery 1980) but this alternative

is beyond the scope of the present paper. The second change

made in the data set was to increase the ratio variable on the

Lotus Europa from 75 to 200 in order to accentuate the distortion

it causes as an outlier.

With these two changes in the data set, HP removed and

the Lotus' RATIO value set to 200, the outlier statistics for the
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complete and base 30 data sets are as shown in Table 3. The

only large leverage value in the complete data set occurs for

the Lotus Europa. The largest studentized deleted residual is

associated with the Chrysler Imperial and the Lotus and the

Chrysler both have Di values which exceed a lower 25% cutoff

value for an F(7,25) distribution. In contrast, the outlier

statistics for the base set reveal no strong indications of

outliers.

[Insert Table 3]

Table 4 displays the least squares and the M-estimates for

the same estimators as in Table 2. Again the least squares esti-

mates and the M-estimates for the base set are quite similar.

Unlike Table 2, the least squares estimates and the M-estimates

are not virtually identical for the complete data set. The M-

estimates for the complete data set are closer to the M-estimates

for the base set than are the least squares estimates. With HP

removed, the M-estimates do appear to be reducing the effect of

the large residuals. The two observations which have (ri/a)

values less than 1.0 in the last iteration of eqn (2.12) cor-

respond to the Chrysler Imperial and the Pontiac Firebird, the
two observations which have the largest t(_i) values in the

third column of Table 3. Interestingly, the Lotus Europa is not

weighted by M-estimation on the complete data set. The effect

of the Lotus on the coefficient estimates is unaltered by
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M-estimation.

[Insert Table 4]

The remaining estimators in Table 4 are the same as those in

Table 2 except for the weighted estimates using *Q (). In

studying the M-estimates for all the estimators in Tables 2 and

4, it appeared that the M-estimates either would fail to weight

or would not adequately weight residuals whose leverage values

were not sufficiently small, even if the residual appeared to be

large. In other words, if a residual was large it would only

get weighted by M-estimation if its leverage value was suitably

small. Adequate weighting by M-estimation seemed to require

that the leverage value be no larger than the average of all

the leverage values, h= (p+l)/n. In applying the weighted

estimator (4.7) we decided to weight the rows of X corresponding

to both the Chrysler Imperial and the Lotus Europa so their

leverage values would equal 0.20 (h= 0.22).

The first three "resistant" estimators shown in Table 4

still fail to improve on the M-estimates for the raw predictor

variables in the complete data set. Each of these estimates

attempts to adjust for outliers by modifying the observations

on a single predictor variable or a single principal component

without regard to the values on the other predictor variables

or prinicpal components. In each case some of the coefficient

estimates appear to be close to those of the base set but others
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are not. Since the predictor variables are not orthogonal,

robust regression procedures which weight variables or comn-

ponents individually might not only be incapable of adequately

adjusting for outliers but they could also further distort I
the estimates by changing the correlation structure among the

predictor variables. These first three estimators could be

suffering such a problem.

The last estimator does seem to adequately adjust for the

outliers in this data base. After the predictor variable values

for the Chrysler and the Lotus are weighted so their leverage

values are approximately 0.20, the 1-estimates weight the

residuals corresponding to both of these observations and

the Pontiac Firebird. The resulting coefficient estimates

are the most similar to the base set in Table 4.

7. CONCLUDING REMARKS

The need for developing regression procedures which are

both robust to error assumption violations and resistant to

aberrant predictor variable values has been demonstrated in

the theoretical derivations of Sections 2 and 3 and the examples

discussed in the previous section. Further studies are needed

.afore any of the Procedures discussed in this paper can be re-

commended for Qeneral use but the example suggests several im-

portant properties which good resistant estimators should possess.

First, they must be able to adjust for outliers in the predictor

variables without substantially altering the correlation
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structure which is imposed by the "non-outlier" observations.

Whether weighting schemes which operate on columns of X rather

than its rows can accomplish such an adjustment without altering

the true underlying correlation structure remains to be carefully

investigated. A second property of robust/resistant estimators

which seems desirable is that the estimators should be capable of

weighting large residuals even if in the raw data set the residuals

are accompanied by large leverage values. If M-estimation is used

on the residuals, this might require a weighting of observations

to insure that leverage values are sufficiently small. Small

leverage values are not only desirable for accurate estimation

but also, as Huber (1981, Chapter 7) proves, required for asymptotic

normality of the estimators for nonnormal errors.

Rank transforms offer another possible alternative to the

procedures studied in this article. Rank transforms have been

shown by Iman and Conover (1979) to be effective robust alternatives

for prediction of the response variable but not necessarily for

parameter estimation, the focus of this paper.
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TABLE 1. OUTLIER STATISTICS FOR GASOLINE MILEAGE DATA.

(Prediction of GPM)

Automobile Complete Data Set Base Set (n-30)

Type hii t(i )  D. h t D.______(i hii t(-i)

Mazda RX-4 .166 .162 .001 .177 .066 .000

Mazda RX-4 Wagon .184 -.258 .002 .187 -.523 .008

Datsun 710 .168 .534 .007 .202 .379 .005

Hornet 4 Drive .119 -.677 .008 .125 -.845 .013

Hornet Sportabout .126 -.994 .018 .134 -1.231 .029

Valiant .224 .377 .005 .228 .508 .010

Duster 360 .255 .614 .017 .258 .611 .017

Mercedes 240D .316 -.329 .007 .346 -.219 .003

Mercedes 230 .276 -.341 .006 .278 -.651 .021

Mercedes 280 .237 -.107 .000 .238 -.239 .002

Mercedes 280C .237 .559 .012 .238 .610 .015

Mercedes 450SE .080 -.935 .009 .092 -1.453 .026

Mercedes 450SL .092 -.805 .008 .094 -1.027 .014

Mercedes 450SLC .088 .304 .001 .091 .373 .002

Cadillac Fleetwood .265 2.342 .208 .358 1.485 .146

Lincoln Continental .318 1.802 .173 .443 .625 .040

Chrysler Imperial .298 -4.000 .522

Fiat 128 .164 -.809 .016 .243 -.705 .020

Honda Civic .381 .413 .014 .423 .927 .079

Toyota Corolla .140 -.500 .005 .145 -.380 .003

Toyota Corona .382 .729 .042 .519 .477 .032

Dodge Challenger .215 1.109 .042 .222 1.933 .119

AMC Javelin .162 1.230 .036 .165 1.798 .073

Camaro Z-28 .328 .839 .044 .360 .588 .025

Pontiac Firebird .088 -1.938 .041 .092 -2.747 .073

Fiat Xl-9 .149 .505 .006 .167 1.033 .027

Porsche 914-2 .170 .474 .006 .193 .623 .012

Lotus Europa .872 -1.394 1.590

Ford Pantera L .364 .120 .001 .480 -.532 .034

Ferrari Dino 1973 .236 .288 .003 .425 .128 .002

Maserati Bora .681 -.227 .014 .806 .307 .051

Volvo 142E .217 -.189 .001 .271 -1.195 .065
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-3TABLE 2. COMPARISON OF GPM COEFFICIENT ESTIMATES (xlO- ).

Least Squares Estimates

Predictor Base Set Complete Huber's Mallows Principal Weighted

Variable (n= 30) Data Set &J(.) 1M( . ) Component

CYL -.958 .459 -.673 4.181* .571 .513

HP -.309* -.071 .242* -.193 -.202 -.046

DRAT 7.042* 3.389* -3.222 2.799 2.083 3.285

WT 31.664* 17.747* 6.768 14.992 24.000* 16.766*

AM 7.553* 4.468 4.307 3.009 5.767 4.450

GEAR -8.966* -5.118* -2.280 -7.505 -2.225 -4.936

RATIO 1.378* .491 -.672* .127 1.037 .402

M-Estimates

Predictor Base Set Complete Huber's Mallows Principal Weighted

Variable (n= 30) Data Set i (.) *M ( ) Component a (•)

CYL -.782 .078 -.213 4.181* .148 -.013

HP -.303* -.096 .226* -.193 -.234 -.146

DRAT 6.960* 4.794 -2.235 2.799 3.838 4.804

WT 31.278* 20.855* 5.607 14.992 27.280* 22.543*

AM 7.523* 5.941* 2.710 3.009 7.165 5.747

GEAR -8.937* -6.371* -2.147 -7.505 -3.736 -6.564*

RATIO 1.348* .588* -.582 .127 1.178* .769

*Significant at an a= .20 (two-tailed) level.
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TABLE 3. OUTLIER STATISTICS FOR ALTERED GASOLINE MILEAGE DATA.
(Prediction of GPM)

Automobile Complete Data Set Base Set (n= 30)

Type hi t(_i) D hii t(_i) Di

Mazda RX-4 .120 -.055 .000 .154 .289 .002

Mazda RX-4 Wagon .123 -.540 .006 .185 -.447 .007

Datsun 710 .156 .725 .014 .186 .559 .011

Hornet 4 Drive .120 -.629 .008 .124 -.772 .012

Hornet Sportabout .125 -.967 .019 .127 -1.067 .024

Valiant .226 .318 .004 .228 .496 .011

Duster 360 .127 1.018 .021 .258 .564 .016

Mercedes 240D .288 -.568 .019 .296 -.578 .021

Mercedes 230 .262 -.229 .003 .276 -.723 .029

Mercedes 280 .209 -.327 .004 .238 -.205 .002

Mercedes 280C .209 .305 .004 .238 .626 .018

Mercedes 450SE .073 -1.025 .012 .089 -1.507 .030

Mercedes 450SL .091 -.841 .010 .092 -1.063 .016

Mercedes 450SLC .086 .224 .001 .089 .294 .001

Cadillac Fleetwood .245 2.150 .187 .353 1.581 .183

Lincoln Continental m303 1.707 .168 .440 .706 .057

Chrysler Imperial .313 -3.776 .606

Fiat 128 .134 -.977 .021 .138 -1.149 .030

Honda Civic .375 .177 .003 .399 .602 .035

Toyota Corolla .136 -.530 .007 .139 -.482 .006

Toyota Corona .226 1.337 .072 .432 .983 .105

Dodge Challenger .194 .795 .022 .220 1.782 .117

AMC Javelin .132 .957 .020 .160 1.873 .086

- Camaro Z-28 .276 1.178 .075 .348 .375 .011

Pontiac Firebird .082 -1.996 .045 .090 -2.724 .082

Fiat Xl-9 .134 .393 .004 .136 .717 .012

Porshe 914-2 .177 .384 .005 .180 .777 .019

Lotus Europa .921 -1.520 3.666

Ford Pantera L .350 .327 .009 .359 .127 .001

Ferrari Dino 1973 .278 .413 .010 .301 .696 .030

Maserati Bora .315 .168 .002 .484 -.912 .112

Volvo 142E .194 .090 .000 .241 -.854 .034
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TABLE 4. COMPARISON OF GPM COEFFICIENT ESTIMATES (xO 3), ALTERED DATA BASE.

Least Squares Estimates

Predictor Base Set Complete Huber's Mallows Principal Weighted

Variable (n- 30) Data Set (M °  Component *(

CYL -.757 2.251* .072 4.478* 2.307 1.653

DRAT 4.865* 2.917 .917 1.498 1.339 4.449

WT 19.312* 13.895* 22.114* 13.048* 16.052* 16.407*

AM 7.053* 4.825 8.847* 6.504 5.447 6.422

GEAR -6.580* -2.478 -3.043 .003 1.578 -3.804

RATIO .303* .067* .277 -.150* .103 .093

M-Estimates

Predictor Base Set Complete Huber's Mallows Principal Weighted

Variable (n= 30) Data Set J(o) 4 M~o  Component I(o)

CYL -.584 1.865* .888 4.342* 2.155* .807

DRAT 4.825* 4.199 1.548 2.067 3.006 4.106

WT 19.164* 15.944* 18.151* 14.083* 17.918* 16.853*

AM 7.032* 6.180* 5.696 7.318 6.216 6.169*

GEAR -6.598* -3.645 -2.516 -.366 .881 -4.680*

RATIO .295* .083* .299 -.147* .109* .179*

*Significant at an a= .20 (two-tailed) level.
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